Exhaustive set to values of x satisfying |cos3x+sin3x|=|cos3x|+|sin3x| in [0,π2] is :
f(x) =π4+2π[cosx12+cos3x32+....]+[sinx1+sin2x2+sin3x3+....] The convergence of the above Fourier series at x = 0 gives
If α is the value of xϵ[0,π] satisfying 3 cos x + 3 sin x + sin 3x - cos 3x = 0, then find the value of 4απ ?
Set of values of x in (0,π) satisfying 1 +log2sinx +log2sin3x≥0 is