Let us simplify the expression, we get
(7x−9y)3=(7x)3−[3×(7x)2×9y]+[3×(7x)×(9y)2]−(9y)3
By using the formula,
(a−b)3=a3−3a2b+3ab2−b3
(1 mark)
Here a=7x,b=−9y
Now, substituting the above values, we get
=343x3−[3×49x2×9y]+[3×7x×81y2]−729y3
=343x3−1323x2y+1701xy2−729y3
∴ (7x−9y)3=343x3−1323x2y+1701xy2−729y3
(2 marks)