(i) (2x−13x)2
Using, (a−b)2=a2−2ab+b2
=(2x)2−2(2x)(13x)+1(3x)2=4x2−43+19x2
(ii) (3x2+5y)2
Using, (a+b)2=a2+2ab+b2
=(3x2)2+2(3x2)(5y)+(5y)2
=9x4+30x2y+25y2
(iii) (√2x−3y)(√2x+3y)
Using, (a−b)(a+b)=a2−b2
=(√2x)2−(3y)2
=2x2−9y2
(iv) (14a−12b+1)2
Using, (a+b+c)2=a2+b2+c2+2ab+2bc+2ca
=(14a)2+(−12b)2+(1)2+2(14a)(−12b)+2(−12b)(1)+2(1)(14a)
=116a2+14b2+1−ab4−b+a2