(i) (3a–2b)3=(3a)3+(−2b)3+3(3a)(−2b)(3a–2b)
[Using the identity, (a−b)3=a3–b3+3a(−b)(a–b)]
=27a3–8b3–18ab(3a–2b)
=27a3–8b3–54a2b+36ab2
=27a3–54a2b+36ab2−8b3
(ii) (1x+y3)3=(1x)3+(y3)3+3(1x)(y3)(1x+y3)
[Using the identity, (a+b)3=a3+b3+3ab(a+b)]
=1x3+y327+yx(1x+y3)=1x3+y327+yx2+y23x