(1+x2−2x)4=[(x2−2x)+1]4=4C0(x2−2x)4(1)0+4C1(x2−2x)3(1)1+4C2(x2−2x)2(1)2+4C3(x2−2x)1(1)3+4C4(x2−2x)0(1)4=(x2−2x)4+4(x2−2x)3+6(x2−2x)2+4(x2−2x)+1=(4C0(x2)4(2x)0−4C1(x2)3(2x)1+4C2(x2)2(2x)2−4C3(x2)1(2x)3+4C4(x2)0(2x)4)+4(3C0(x2)3(2x)0−3C1(x2)2(2x)1+3C2(x2)1(2x)2−3C3(x2)0(2x)3)+6(x24+4x2−2)+2x−8x+1=x416−x2+6−16x2+16x4+x32−6x+24x−32x3+32x2+24x2−12+2x−8x+1=x416+x32+12x2−4x+16x4−32x3+8x2+16x−5