1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Binomial Expression
Expand using ...
Question
Expand using Binomial Theorem
(
1
+
x
2
−
2
x
)
4
,
x
≠
0
.
Open in App
Solution
(
1
+
x
2
−
2
x
)
4
=
(
(
1
+
x
2
)
−
2
x
)
4
=
(
1
+
x
2
)
4
+
4
(
1
+
x
2
)
3
(
−
2
x
)
+
6
(
1
+
x
2
)
2
(
−
2
x
)
2
+
4
(
1
+
x
2
)
(
−
2
x
)
3
+
(
−
2
x
)
4
=
(
1
+
x
2
)
4
−
8
x
(
1
+
x
2
)
3
+
24
x
2
(
1
+
x
2
)
2
−
32
x
3
(
1
+
x
2
)
+
16
x
4
{
1
4
+
4.1
3
.
x
2
+
6.1
2
.
(
x
2
)
3
+
4.1.
(
x
2
)
3
(
x
2
)
4
}
−
8
x
{
1
3
+
3.1
2
.
x
2
+
3.1.
(
x
2
)
2
+
(
x
2
)
3
}
+
24
x
2
{
1
+
x
2
4
+
x
}
−
32
x
3
(
1
+
x
2
)
+
16
x
4
=
1
+
2
x
+
3
2
x
2
+
x
3
2
+
x
4
16
−
8
x
−
12
−
6
x
−
x
2
+
24
x
2
+
6
+
24
x
−
32
x
3
−
16
x
2
+
16
x
4
=
x
4
16
+
x
3
2
+
x
2
3
−
4
x
−
5
+
16
x
+
8
x
2
−
32
x
3
+
16
x
4
∴
(
1
+
x
2
−
2
x
)
4
=
x
4
16
+
x
3
2
+
x
2
2
−
4
x
−
5
+
16
x
+
8
x
2
−
32
x
3
+
16
x
4
Suggest Corrections
1
Similar questions
Q.
Expand Using Binomial Theorem
(
1
+
x
2
−
2
x
)
4
,
x
≠
0
.
Q.
Expand using Binomial Theorem
(
1
+
x
2
−
2
x
)
4
,
x
≠
0
.
Q.
By using binomial theorem, expand
(
1
+
x
+
x
2
)
3
.
Q.
Expand using binomial theorem
[
1
+
x
2
−
2
x
]
4
,
x
≠
0
.
Q.
Expand using Binomial Theorem
(
1
+
x
2
−
2
x
)
4
,
x
≠
0
and let the sum of coefficients of the terms in the expansion be
t
. Find
10000
t
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
What is Binomial Expansion?
MATHEMATICS
Watch in App
Explore more
Binomial Expression
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app