We have [1+x2−2x]4
=[1+(x2−2x)]4
=4C0+4C1(x2−2x)+4C2(x2−2x)2+ 4C3(x2−2x)3+4C4(x2−2x)4
=1+4(x2−2x)+6(x24+4x2−2)+ 4(x38−8x3−3x2+6x)+[4C0(x2)2(2x)2− 4C3(x2)(2x)3+4C4(2x)4]
=1+(2x−8x)+(32x2+24x2−12)+(x32−32x3− 6x+24x)+(x416−x2+6−16x2+16x4)
=−5−4x+x22+x32+x416+16x+8x2−32x3+16x4