Explain the procedure to find dy2dx2 [second order derivative] of any function y=f(x).
Definition
Example
Let the function be f(x)=y=x2+x .
⇒dydx=d(x2+x)dx⇒dydx=2x+1 (differentiating y with respect to x)
⇒dy2dx2=d(2x+1)dx⇒dy2dx2=2 (differentiating dydx with respect to x)
Hence dy2dx2 of f(x) is 2 .