A trigonometric identity is an equation involving trigonometric ratios of an angle, where the equation holds true for a defined range of values of the angle.
Let us take any acute angle taking point P on OB we draw perpendicular PQ on OAB. Thus we have a right angled triangle OPQ. If we suppose \angle
POQ=θ then
sinθ=PQOP,cosθ=OQOPtanθ=PQOPsecθ=OPPQ=1cosθcosecθ=OPPQ=1sinθcotθ=OPPQ=1tanθtanθ=PQOQ=PQOP÷OPOP =sinθcosθcotθ=cosθsinθInΔPOQ,∠Q=90∘ ∴ By pythagoras theorem
we have
OQ2+PQ2=OP2 .....(1)
Dividing both sides (i) by OP^2 we get
OQ2OP2+PQ2OP2=OP2OP2(OQOP)2+(PQOP)2=1 or,
(cosθ)2+(sinθ2)=1 or
cos2θ+sin2θ=1 -----(2)
Similarly, dividing both sides of (1) by
OQ2 We get
OQ2OQ2+PQ2OQ2=OP2OQ2 or,
1+(PQOQ)2+(OPOQ)2 Or,
1+(tanθ)2=(secθ)2 or,
1+tan3θ=sec2θ -----(3)
A gain dividing both sides of (i) by
PQ2, we get
(OQPQ)2+1=(OPPQ)2 Or,
(cotθ)2+1=(cosecθ)2 or,
1+cot2θ=cosec2θ ----(4)
Here, (2), (3) and (4) are all identities, these can be used to express on e trigonometric ratio to other trogonometric ratio. For example
cos2θ+sin2θ=1sin2θ=1−cos2θsinθ=±√1−cos2θ∴sinθ=√1−cos2θ similarly.
cosθ=√1−sin2θ,secθ=√1+tan2θtanθ=√sec2θ−1,cosecθ=√1+cot2θcotθ=√cosec2θ−1,foro∘<θ<90∘