wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Explain uv rule of differentiation.


Open in App
Solution

Step 1: Necessary conditions

Let f(x) be a function and f(x) is ratio of two functions u(x) and v(x),

i.e., f(x)=u(x)v(x)

where u and v both are differentiable functions and v(x)0

Step 2: uv Rule of Differentiation.

f(x)=u(x)v(x)

Derivative of f(x) w.r.t. x is given by,

f'(x)=u'(x)v(x)-u(x)v'(x)v(x)2

Step 3: Proof of the rule.

Definition of Derivative is,

f'(x)=limh0f(x+h)-f(x)h

f(x)=u(x)v(x). So, f(x+h)=u(x+h)v(x+h)

Now apply the definition of derivative;

f'(x)=limh0f(x+h)-f(x)hf'(x)=limh0u(x+h)v(x+h)-u(x)v(x)hf'(x)=limh0u(x+h)v(x)-u(x)v(x+h)v(x+h)v(x)hf'(x)=limh0u(x+h)v(x)-u(x)v(x+h)v(x+h)v(x)hf'(x)=limh0u(x+h)v(x)-u(x)v(x+h)h.limh01v(x+h)v(x)[limxa(u(x).v(x))=limxa(u(x)).limxa(v(x))]f'(x)=limh0u(x+h)v(x)-u(x)v(x)+u(x)v(x)-u(x)v(x+h)h.1v(x+0)v(x)[puttingh=0inthe2ndlimit]f'(x)=limh0v(x)(u(x+h)-u(x))-u(x)(v(x+h)-v(x))h.1v(x)2f'(x)=limh0{v(x)(u(x+h)-u(x))h-u(x)(v(x+h)-v(x))h}.1v(x)2f'(x)={limh0v(x)(u(x+h)-u(x))h-limh0u(x)(v(x+h)-v(x))h}.1v(x)2[limxa(f(x)-g(x))=limxaf(x)-limxag(x)]f'(x)={v(x).limh0u(x+h)-u(x)h-u(x).limh0v(x+h)-v(x)h}.1v(x)2[,v(x),u(x)areconstants]f'(x)={v(x).u'(x)-u(x).v'(x)}.1v(x)2f'(x)=u'(x)v(x)-u(x)v'(x)v(x)2

Hence, the proof is complete.


flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
L'hospitals Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon