Explanation of the elimination method of linear equation in 2 variable.
Step 1: Standard form of linear equation in two variables
Linear equation in two variables and is of the form
where are constant.
Step 2: Explanation of the elimination method
Suppose we have two simultaneous linear equations in two variables.
We have to eliminate one variable, either or from the two equations.
Suppose we eliminate . Then from the resulting equation we have to find the value of .
Then substitute the value of in any one of the equation or and solve the equation to find the value of .
Step 3: Elimination of
Let us eliminate .
Multiply equation by . We get,
Multiply equation by . We get,
Now, subtract equation from equation
and gets canceled out and we get the equation,
Step 4: Find out the value of
Step 5: Find out the value of
Thus eliminating we get the value of .
Now we will put the value of in any one of the equation or and solve to get the value of .
Put the value of in equation
Step 6: Conclusion
By elimination method
Hence, elimination method of linear equation in 2 variables is explained.