Express (1+i)i in the A+iB form, Where i = √−1
Let (1+i)i = A+iB
Taking log in both sides,we get,
loge(A+iB) = i log(1+i)
= i log (√2(cosπ4+isinπ4))
Express 1 + i in Euler's form
= i loge(√2eiπ4)
= i [loge√2+logeeiπ4]
loge(A+iB) = i[loge+ii4] = i loge√2 - π4
= i2 loge2 - π4
A+iB = e(iloge√2−π4) = eiloge√2.e−π4
= e−π4[cos(loge√2)+isin(loge√2)]
= e−π4cos(loge√2)+ie−π4sin(loge√2) = e−π4[cos(loge√2)+isin(loge√2)]