Let →b=2^i−4^j+^k
→a=2^i+3^j+^k
Let →a=→a1+→a2
→a1= vector parallel to →b
→a2= vector perpendicular to →b
Since, →a1 is parallel to →b
by equation of line in vector form
→a1=λ(→b)=λ(2^i−4^j−^k) scalar λ− constant
→a1=2λ^i−4λ^j+λ^k
Also,
→a2=→a−→a1
→a2=(2^i+3^j+^k)−(2λ^i−4λ^j+λ^k)
→a2=^i(2−2λ)+^j(3+4λ)+^k(1−λ)
Since, →a2 and →b are perpendicular.
→a2.→b=0
[^i(2−2λ)+^j(3+4λ)+^k(1−λ)].[2^i−4^j+^k]=0
2(2−2λ)+(3+4λ)(−4)+(1−λ).1=0
4−4λ+(−12)−16λ+1−λ=0
−7=21λ
λ=−13
∴→a1=−13(2i−4j+k)
→a2=i(2−2(−13))+j(3+4(−13))+k(1−(−13))
and →a2=8^i3+^j53+4^k3