Solve:- 4x−2−2x+1=0
-5
6
5
-6
Given,
4x−2−2x+1=0
⇒ 4x−2=2x+1
⇒ (22)x−2=2x+1
⇒ 22x−4=2x+1 [∵(am)n = amn]
Since the bases are equal, exponents must also be equal.
⇒2x−4=x+1
⇒ x=5
Solve the equations:
(i) 5x = 3x + 24;
(ii) 8t + 5 = 2t − 31;
(iii) 7x − 10 = 4x + 11;
(iv) 4z + 3 = 6 + 2z;
(v) 2x − 1 = 14 − x;
(vi) 6x + 1 = 3(x − 1) + 7;
(vii) ;
(viii) ;
(ix) 3(x + 1) = 12 + 4 (x − 1);
(x) 2x − 5 = 3(x − 5);
(xi) 6(1 − 4x) + 7(2 + 5x) = 53;
(xii) 3(x + 6) + 2 (x + 3) = 64;
(xiii) ;
(xiv) .
Solve : 2x+35>4x−12,x ϵ W.