Express cos(4θ) in terms of cos(θ).
Apply the identity of cos(2x) in terms of cos(x)
Now, as we know the identity cos(2x)=2cos2(x)-1
Substitute x=2θ we have cos4θ=2cos22θ-1
Again using the above-used identity,
cos4θ=22cos2(θ)-1)2-1cos(4θ)=22cos2(θ)2+12-2(2cos2(θ))1-1cos(4θ)=2[4cos4(θ)+1-4cos2θ]-1cos(4θ)=8cos4(θ)+2-8cos2θ-1cos(4θ)=8cos4(θ)-8cos2θ+1
Hence, the answer is cos(4θ)=8cos4(θ)-8cos2θ+1
Express cos68°+tan76° in terms of the angles between 0°and45°.