The correct option is C (15+3cosθ)+(−2cotθ/25+3cosθ)i
To Express 1(1−cosθ+2isinθ) in the form x+iy
We have , 1(1−cosθ+2isinθ)
=1(1−cosθ)+2isinθ×(1−cosθ)−2isinθ(1−cosθ)−2isinθ
=(1−cosθ−2isinθ)(1−cosθ)2+(2sinθ)2
=(1−cosθ−2isinθ)1+cos2θ−2cosθ+4sin2θ
=(1−cosθ)(1−cosθ)(3cosθ+5)−2isinθ(1−cosθ)(3cosθ+5)
=1(3cosθ+5)−2isinθ2cosθ22sin2θ2(3cosθ+5)
=1(3cosθ+5)−2cotθ2(3cosθ+5)i
=1(5+3cosθ)+(−2cotθ/2)(5+3cosθ)i
Hence , Option C