∫40x3dx
Evaluating integral as limit of sum
∫baf(x)dx=(b−a)limn⟶∞1n[f(a)+f(a+h)+...f(a+(n−1)h)]h=b−an
Here, h=4−0n=4n=4limn⟶∞1n[f(0)+f(4n)+....f((n−1)4n)]=4limn⟶∞1n⎡⎣0+(4n)3+(2.4n)3+....((n−1)4n)3⎤⎦=4limn⟶∞1n⎡⎣(4n)3(13+23+...(n−1)3)⎤⎦
We know, =13+23+33+....nterms=(n(n+1)2)2=4limn⟶∞1n(4n)3(n(n+1)2)2=44limn⟶∞1n1n4×n2(n−1)24=43limn⟶∞1nn2−2n+1n2=43limn⟶∞(1−2n+1n2)=43=64