We will change all the logarithms to base 5.
Thus log2524=log52(23×3)
=log52(23)+log52(3)
log2524=32log52+12log53 ...(1)
Now α=log615=log515log56
∵log55=1
=⇒α=log53+1log52+log53 ...(2)
β=log1218=log518log512
=log5(32.2)log5(22.3)
=2log53+log522log52+log53 ...(3)
Now putting log52=x and log53=y, we get from (2) and (3)
α=y+1x+y
or αx+(α−1)y−1=0 ...(4)
β=2y+x2x+y
(2β−1)x−(2−β)y+0=0 ...(5)
Solving (4) and (5), we get
x−(2−β)=y−(2β−1)=1−[α(2−β)+(α−1)(2β−1)]
or x2−β=y2β−1=1αβ+α−2β+1.
⇒log52=x=2−βαβ+α−2β+1
and log53=y=2β−1αβ+α−2β+1
Substituting these values of log52 and log53, in (1), we get
log2524=32(2−βαβ+α−2β+1)+12(2β−1αβ+α−2β+1)
log2524=5−β2αβ+2α−4β+2.