wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express each of the following in terms of trigonometric ratios of angles between 0° and 45°.
(i) sin 72° + cosec 72°
(ii) cosec 66° + tan 66°
(iii) tan 68° + sec 68°
(iv) cot 59° + cosec 59°
(v) cos 51° + cot 49° – sec 47°
(vi) sin 67° + cos 75°

Open in App
Solution

(i) sin72° + cosec72°

sin72°+cosec72°=sin90°-18°+cosec90°-18°=cos18°+sec18° sin90°-θ=cosθ and cosec90°-θ=secθHence, sin72°+cosec72°=cos18°+sec18°.

(ii) cosec66° + tan66°

cosec66°+tan66°=cosec90°-24°+tan90°-24°=sec24°+cot24° tan90°-θ=cotθ and cosec90°-θ=secθHence, cosec66°+tan66°=sec24°+cot24°.

(iii) tan68° + sec68°

tan68°+sec68°=tan90°-22°+sec90°-22°=cot22°+cosec22° tan90°-θ=cotθ and sec90°-θ=cosecθHence, tan68°+sec68°=cot22°+cosec22°.

(iv) cot59° + cosec59°

cot59°+cosec59°=cot90°-31°+cosec90°-31°=tan31°+sec31° cot90°-θ=tanθ and cosec90°-θ=secθHence, cot59°+cosec59°=tan31°+sec31°.

(v) cos51° + cot49° – sec47°

cos51°+cot49°-sec47°=cos90°-39°+cot90°-41°-sec90°-43°=sin39°+tan41°-cosec43° cos90°-θ=sinθ, cot90°-θ=tanθ and sec90°-θ=cosecθHence, cos51°+cot49°-sec47°=sin39°+tan41°-cosec43°.

(vi) sin67° + cos75°

sin67°+cos75°=sin90°-23°+cos90°-15°=cos23°+sin15° sin90°-θ=cosθ and cos90°-θ=sinθHence, sin67°+cos75°=cos23°+sin15°.

flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon