Express each one of the following with rational denominator :
(i) 13+√2
(ii) 1√6−√5
(iii) 16√41−5
(iv) 305√3−3√5
(v) 12√5+√3
(vi) 3√3+12√2−√3
(vii) 6−4√26+4√2
(viii) 3√2+12√5−3
(ix) b2√a2+b2+a
(i) 13+√2=1(3−√2)(3+√2)(3−√2)=3−√2(3)2−(√2)2{∵(a+b)(a−b)=a2−b2}=3−√29−2=3−√27
(ii) 1√6−√5=1(√6+√5)(√6−√5)(√6+√5)=√6+√5(√6)2−(√5)2∵ {(a+b)(a−b)=a2−b2}=√6+√56−5=√6+√51=√6+√5
(iii) 16√41−5=16(√41+5)(√41−5)(√41+5)
{Multiplying and dividing by (√41+5)}
=16(√41+5)(√41)2−(5)2
{∵ (a+b)(a−b)=a2−b2}
=16(√41+5)41−25=16(√41+5)16
=√41+5
(iv) 305√3−3√5=30(5√3+3√5)(5√3−3√3)(5√3+3√5)
{Multiplying and dividing by (5√3+3√5) }
=30(5√3+3√5)(5√3)2−(3√5)2
=30(5√3+3√5)25×3−9×5=30(5√3+3√5)75−45
=30(5√3+3√5)30=5√3+3√5
(v) 12√5−√3=1×(2√5+√3)(2√5−√3)(2√5+√3)
{Multiplying and dividing by (2√5+√3) }
=2√5+√3(2√5)2−(√3)2=2√5+√320−3
=2√5+√317
(vi) √3+12√2−√3=(√3+1)(2√2+√3)(2√2−√3)(2√2+√3)
{Multiplying and dividing by (2√2+√3) }
=√3×2√2+√3×√3+2√2+√3(2√2)2−(√3)2
=2√6+3+2√2+√38−3
=2√6+2√2+√3+35
(vii) 6−4√26+4√2=(6−4√2)(6−4√2)(6+4√2)(6−4√2)
{Multiplying and dividing by 6−4√2 }
=(6−4√2)2(6)2−(4√2)2
=36+16×2−2×6×4√236−32
=36+32−48√24=68−48√24
=17−12√2
(viii) 3√2+12√5−3=(3√2+1)(2√5+3)(2√5−3)(2√5+3)
{Multiplying and dividing by (2√5+3) }
=3√2×2√5+3×3√2+2√5+3(2√5)2−(3)2
=6√10+9√2+2√5+320−9
=6√10+9√2+2√5+311
(ix) b2√a2+b2+a
=b2(√a2+b2−a)(√a2+b2+a)(√a2+b2−a)
{Dividing and multiplying by (√a2+b2−a) }
=b2(√a2+b2−a)(√a2+b2)2−a2=b2(√a2+b2−a)a2+b2−a2
=b2(√a2+b2−a)b2=√a2+b2−a