Express in the form A+iB (1) 3+5i2−3i (2) √3−i√22√3−i√2 (3) 1+i1−i (4) (1+i)23−i (5) (a+ib)2a−ib−(a−ib)2a+ib
Open in App
Solution
We know that (a+ib)(a−ib)=a2+b2
Here to express in A+iB form we have to make the denominator real we have to multiply both denominator and numerator with complex conjugate of denominator.
(1)3+5i2−3i
multiply both denominator and numerator with 2+3i
=(3+5i)(2+3i)(2+3i)(2−3i)
=−9+19i13
(2)√3−i√22√3−i√2
multiply both denominator and numerator with 2√3+i√2
(√3−i√2)(2√3+i√2)(2√3−i√2)(2√3+i√2)
=8−i√614
(3)1+i1−i
multiply both denominator and numerator with 1+i
=(1+i)(1+i)(1+i)(1−i)
=2i2
=i
(4)(1+i)23−i
multiply both denominator and numerator with 3+i
=(1+i)2(3+i)(3+i)(3−i)
=2i(3+i)10
=−1+3i5
(5)(a+ib)2a−ib−(a−ib)2a+ib
cross multiplying and solving
=(a+ib)3−(a−ib)3a2+b2
We know that p3−q3=(p−q)(p2+pq+q2),hence expanding the numerator we get