wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express 20exdx as the limit of a sum.

Open in App
Solution

Consider the problem

We know that

f(x)dx=(ab)limn1n(f(a)+f(a+h)+f(a+2h)...+f(a+(n1)h))

So, Putting
a=0
b=2
h=ban=20n=2n

f(x)=ex

Hence, we can write,

20exdx=(20)limn1n(f(0)+f(0+h)+f(0+2h)+f(0+(n1)h))

f(x)=exf(0)=e0=1f(0+h)=e0+h=ehf(0+2h)=e0+2h=e2hf(0+(n1)h)=e0+(n1)h=e(n1)h

Thus, equation becomes

20exdx=(20)limn1n(f(0)+f(0+h)+f(0+2h)++f(0+(n1)h))=2.limn1n(1+eh+e2h+......+e(n1)h)

Let,
s=eh+e2h++e(n1)h
it is a G.P with common ratio (r)

Sum of G.P

s=a(1rn)1r=eh(1(eh)n)1eh=eh(1enh)1eh

Thus,

20exdx=2.limn1n(1+eh+e2h++e(n1)h)

Now, putting the value of s

20exdx=2.limn1n(1+eh(1enh)1eh)=2(limn1n+limn1n(eh(1enh1eh)))=2(1+limn(ehn.enh1eh1))(taking1commonnumeratoranddenominator)=2(0+limn(ehn.enh1h.eh1h))(Multiplyinganddividingdenominatorbyh)=2.limnehn(enh1h)(1eh1h)
=2.limnehn(enh1h).limn(1eh1h)

Now, solving limn1eh1h
As
n2hh0

Therefore,
limn1eh1h=limh01eh1h=11=1

Thus, the equation becomes

20exdx=2limnehn(enh1h)limn(1eh1h)=2limnehn(enh1h)1=2limne2nn(en.2n12n)(usingh=2n)=2limne2n(e212)=2(e2(e212))=2e0(e21)2=221(e21)=e21





flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon