Consider the problem
We know that
∫f(x)dx=(a−b)limn→∞1n(f(a)+f(a+h)+f(a+2h)...+f(a+(n−1)h))
So, Putting
a=0
b=2
h=b−an=2−0n=2n
f(x)=ex
Hence, we can write,
∫20exdx=(2−0)limn→∞1n(f(0)+f(0+h)+f(0+2h)⋯…+f(0+(n−1)h))
f(x)=exf(0)=e0=1f(0+h)=e0+h=ehf(0+2h)=e0+2h=e2hf(0+(n−1)h)=e0+(n−1)h=e(n−1)h
Thus, equation becomes
∴∫20exdx=(2−0)limn→∞1n(f(0)+f(0+h)+f(0+2h)+⋯⋯+f(0+(n−1)h))=2.limn→∞1n(1+eh+e2h+......+e(n−1)h)
Let,
s=eh+e2h+……+e(n−1)h
it is a G.P with common ratio (r)
Sum of G.P
s=a(1−rn)1−r=eh(1−(eh)n)1−eh=eh(1−enh)1−eh
Thus,
∴∫20exdx=2.limn→∞1n(1+eh+e2h+……+e(n−1)h)
Now, putting the value of s
∫20exdx=2.limn→∞1n(1+eh(1−enh)1−eh)=2(limn→∞1n+limn→∞1n(eh(1−enh1−eh)))=2(1∞+limn→∞(ehn.enh−1eh−1))(taking−1commonnumeratoranddenominator)=2(0+limn→∞(ehn.enh−1h.eh−1h))(Multiplyinganddividingdenominatorbyh)=2.limn→∞ehn(enh−1h)(1eh−1h)
=2.limn→∞ehn(enh−1h).limn→∞(1eh−1h)
Now, solving limn→∞1eh−1h
As
n→∞⇒2h→∞⇒h→0
Therefore,
limn→∞1eh−1h=limh→01eh−1h=11=1
Thus, the equation becomes
∴∫20exdx=2limn→∞ehn(enh−1h)limn→∞(1eh−1h)=2limn→∞ehn(enh−1h)1=2limn→∞e2nn(en.2n−12n)(usingh=2n)=2limn→∞e2n(e2−12)=2(e2∞(e2−12))=2e0(e2−1)2=221(e2−1)=e2−1