A+B+C=π,∴3A+3B+3C=3π
12(3A+3B)=32π−32C
∴sin12(3A+3B)=−cos32C
and cos12(3A+3B)=−sin32C.
L.H.S. =2sin3A+3B2cos3A−3B2+2sin3C2cos3C2
=−2cos3C2cos3A−3B2+2sin3C2cos3C2
=−2cos3C2[cos3A−3B2−sin3C2]
=−2cos3C2[cos3A−3B2+cos3A+3B2]
=−4cos3A2cos3B2cos3C2
If it be zero then at least one factor is zero, hence 3A/2=90o or A=60o etc.