Express √19 as a continued fraction, and find a series of fractions approximating to its value.
Open in App
Solution
√19=4+(√19−4)=4+3√19+4; √19+43=2+√19−23=2+5√19+2; √19+25=1+√19−35=1+2√19−3; √19+32=3+√19−35=3+5√19+3; √19+35=1+√19−25=1+3√19+2; √19+23=2+√19−43=2+1√19+4; √19+4=8+(√19−4)=8+...... after this the quotients 2,1,3,1,2,8 recur; hence √19=4+12+11+13+11+..