wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express tan1(cosx1sinx),π2<x<π2 in the simplest form.

Open in App
Solution

tan1cosx1sinx
Calculate cos x & 1-sin x .
As cos2x=cos2xsin2x.
cos2(x2)=cos2x2sin2x2
cosx=cos2x2sin2x2
Similarly sinx=2sinx2cosx2
Now
tan1[cos2x2sin2x21(2sinx2cosx2)]
tan1[cos2x2sin2x2cos2x2+sin2x22sinx2cosx2]
tan1[(cosx2+sinx2)(cosx2sinx2)(cosx2sinx2)2]
tan1[cosx2+sinx2cosx2sinx2]
tan1[cosx2+sinx2/cosx2cosx2sinx2/cosx2]
tan1[1+tanx21tanx2]
tan1(tanπ4+tanx21tanπ4tanx2)
=tan1[tan(π4+x2)]
=π4+x2.


1203887_1283163_ans_8b4ca1f01dab4870a288437f57fa7bf1.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon