wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express the complex no 1+7i(2i)2 in the polar form.

Open in App
Solution

1+7i(2i)2=1+7i(2i)2x(2+i)2(2+i)2
=(1+7i)(2+i)2(2i)2(2+i)2

=(1+7i)(41+4i)((2i)(2+i))2

=(41+4i+28i7i28)((2i)(2+i))2
=(25+25i)(22+1)2 [(a+ib)(aib)=a2+b2]
=(25+25i)25
=1+i
If θ is principal argument and r is magnitude of complex number z then Polar form is represented by:
z=r(cosθ+isinθ)
On comparision:
1=rcosθ and 1=rsinθ
On squaring and adding we get:
r2(cos2θ+sin2θ)=(1)2+12=2
r2=2 [cos2θ+sin2θ=1]
r=2
further rsinθrcosθ=11
tanθ=1=tan(π4)
θ=3π4 [tan(πθ)=tanθ]
Polar representation of the given complex no. is:
1+7i(2i)2=1+i=2(cos(3π4)+isin(3π4))

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon