1+7i(2−i)2=1+7i(2−i)2x(2+i)2(2+i)2
=(1+7i)(2+i)2(2−i)2(2+i)2
=(1+7i)(4−1+4i)((2−i)(2+i))2
=(4−1+4i+28i−7i−28)((2−i)(2+i))2
=(−25+25i)(22+1)2 [(a+ib)(a−ib)=a2+b2]
=(−25+25i)25
=−1+i
If θ is principal argument and r is magnitude of complex number z then Polar form is represented by:
z=r(cosθ+isinθ)
On comparision:
−1=rcosθ and 1=rsinθ
On squaring and adding we get:
r2(cos2θ+sin2θ)=(−1)2+12=2
r2=2 [cos2θ+sin2θ=1]
r=√2
further rsinθrcosθ=1−1
tanθ=−1=−tan(π4)
θ=3π4
[tan(π−θ)=−tanθ]
Polar representation of the given complex no. is:
1+7i(2−i)2=−1+i=√2(cos(3π4)+isin(3π4))