z=(1+√3i)2(√3−i)
=1+3i2+2√3i(√3−i)
=1−3+2√3i√3−i
=−2+2√3i√3−i×√3+i√3+i
=−2√3+6i−2i+2√3i23−i2
=−4√3+4i3+1
=4(−√3+i)4
∴z=−√3+i
Here, a=−√3,b=1
Modulus, |z|=√a2+b2
=√(−√3)2+(1)2
=√3+1=√4
=2
Argument=−π+tan−1∣∣∣ba∣∣∣
=−π+tan−1∣∣∣1−√3∣∣∣
=−π+tan−11√3
=−π+π6=−5π6