wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express the complex number sin π5+i(1cos π5) in polar form.

Open in App
Solution

Let z=sin π5+i(1cos π5).

Let its polar form be z=r(cos θ+isin θ).

Now, r2=|z|2=sin2π5+(1cos π5)2=(sin2 π5+cos2π5)+12 cosπ5

r2=2(1cos π5)=4sin2π10r=2sinπ10.

Let α be the acute angle, given by

tan α=Im(z)Re(z)=1cosπ5sinπ5=2sin2π102.sinπ10.cosπ10=tanπ10α=π10.

Clearly, the point representing z lies in the first quadrant as x>0 and y>0.

arg(z)=θ=α=π10.
Thus, r=2sinπ10 and θ=π10.

Hence, the required polar form is 2sinπ10(cosπ10+isinπ10).


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Graphs of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon