Express the complex number sin π5+i(1−cos π5) in polar form.
Let z=sin π5+i(1−cos π5).
Let its polar form be z=r(cos θ+isin θ).
Now, r2=|z|2=sin2π5+(1−cos π5)2=(sin2 π5+cos2π5)+1−2 cosπ5
⇒r2=2(1−cos π5)=4sin2π10⇒r=2sinπ10.
Let α be the acute angle, given by
tan α=∣∣Im(z)Re(z)∣∣=∣∣∣1−cosπ5sinπ5∣∣∣=2sin2π102.sinπ10.cosπ10=tanπ10⇒α=π10.
Clearly, the point representing z lies in the first quadrant as x>0 and y>0.
∴arg(z)=θ=α=π10.
Thus, r=2sinπ10 and θ=π10.
Hence, the required polar form is 2sinπ10(cosπ10+isinπ10).