wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express the expression is simplest from tan1(xa+a2x2)

Open in App
Solution

given
tan1(xa+a2x2)
let x=asinθθ=sin1(xa)
tan1(asinθa+a2a2sin2θ)
tan1asinθa(1+1sin2θ)
tan1⎜ ⎜ ⎜2sinθ2cosθ21+cos2θ⎟ ⎟ ⎟ we know 1+cos2θ=2cos2θsin2θ=2sinθcosθ
tan1⎜ ⎜ ⎜2sinθ2cosθ21+cosθ⎟ ⎟ ⎟
tan1⎜ ⎜ ⎜2sinθ2cosθ22cos2θ2⎟ ⎟ ⎟
tan1⎜ ⎜ ⎜sinθ2cosθ2⎟ ⎟ ⎟
tan1(tanθ2)
θ212sin1(xa)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon