wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Express the following complex no in polar form.
(i) (1sinα)+i(cosα)
(ii) 1icosπ3+i sinπ3=1i12+i32

Open in App
Solution

(i) (1sinα)+i(cosα)
z=x+iy
Plolar form, z=r(cosθ+i sinθ)
r=x2+y2
tanθ=yx=cosα1sinαcosθ=1sinα(cosα)2+(1sinα)2sinθ=cosα(cosα)2+(1sinα)2r=(1sinα)2+(cosα)2z=(1sinα)2+(cosα)2[1sinα(cosα)2+(1sinα)2+icosα(cosα)2+(1sinα)2].

(ii) 1icosπ3+i sinπ3=1i12+i32
=2(1i)(1i3)(1+i3)(1i3)=2[1i(3+1)3]1+3=12[(13)i(3+1)]r=(13)2+(3+1)2=4323+3+1+23r=22tanθ=3+113=tan60+tan451(tanθ60)(tan45)tanθ=tan(105)θ=105z=22(cos105+isin105)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon