(i) (1−sinα)+i(cosα)
z=x+iy
Plolar form, z=r(cosθ+i sinθ)
r=√x2+y2
tanθ=yx=cosα1−sinαcosθ=1−sinα√(cosα)2+(1−sinα)2sinθ=cosα√(cosα)2+(1−sinα)2r=√(1−sinα)2+(cosα)2∴z=√(1−sinα)2+(cosα)2[1−sinα√(cosα)2+(1−sinα)2+icosα√(cosα)2+(1−sinα)2].
(ii) 1−icosπ3+i sinπ3=1−i12+i√32
=2(1−i)(1−i√3)(1+i√3)(1−i√3)=2[1−i(√3+1)−√3]1+3=12[(1−√3)−i(√3+1)]r=√(1−√3)2+(√3+1)2=√43−2√3+3+1+2√3⇒r=2√2tanθ=√3+11−√3=tan60+tan451−(tanθ60)(tan45)⇒tanθ=tan(105)⇒θ=105∘z=2√2(cos105∘+isin105∘)