Express the following complex numbers in the standard form a + i b :
(i) (1+i)(1+2i)(ii) 3+2i−2+i(iii) 1(2+i)2(iv) 1−i1+i(v) (2+i)32+3i(vi) (1+i)(1+√3i)1−i(vii) 2+3i4+5i(viii) (1−i)31−i3(ix) (1+2i)−3(x) 3−4i(4−2i)(1+i)(xi) (11−4i−21+i)(3−4i5+i)(xii) 5+√2i1−√2i
(i) (1+i)(1+2i)=1×(1+2i)+i(1+2i)=1+2i+i+2i2=1+3i−2=−1+3i∴ (1+i)(1+2i)=−1+3i
(ii) 3+2i−2+i=3+2i(−2+i)×−2−i−2−i[Rationalising the denominator]=3(−2−i)+2i(−2−i)(−2)2−(i)2 [∵ (a+ib)(a−ib)=a2+b2]=−6−3i−4i+24+1 [∵ −i2=1]=−4−7i5=−45−75i∴ 3+2i−2+i=−45−75i
(iii) 1(2+i)2=1(2+i)2=122+(i)2+2×2×i=14−1+4i=13+4i=1(3+4i)×(3−4i)(3−4i) [on rationalising the denominator]=3−4i32+42 [∵ (a+ib)(a−ib)=a2+b2]=3−4i25=325−425i∴ 1(2+i)2=325−425i
(iv) 1−i1+i=(1−i)(1+i)×(1−i(1−i (Rationalising the denominator)=(1−i)212+12 [∵ (a+ib)(a−ib)=a2+b2]=12+i2=2×i×12=−2i2=−i=0−i∴ 1−i1+i=0−i
(v) (2+i)32+3i=23+i3+3×2×i(2+i))2+3i [∵ (a+b)3=a3+b3+3ab(a+b)]=(8−i+6i(2+i))2+3i×(2−3i)2−3i(On rationalising the denominator)=(8−i+12i+6i2)(2−3i)22+32=(8−6+11i)(2−3i)4+9 (∵ i2=−1)=(2+11i)(2−3i)13=4−6i+22i+3313=37+16i13=3713+1613i∴ (2+i)32+3i=3713+1613i
(vi) (1+i)(1+√3i)1−i=1(1+√3+i(1+√3i))1−i=(1+√3i+i−√3)1−i (∵ i2=−1)=(1−√3)+i(1+√3)1−i×(1+i)1+i (Rationalising the denominator)=(1−√3)(1+i)+i(1+√3)(1+i)12+12=1+i−√3(1+i)+i(1+i+√3(1+i))2=1+i−√3−√3i+(1+i+√3+√3i)2=1−√3+i−√3i−1+√3i−√32=−2√3+2i2=−√3+i∴ (1+i)(1+√3i)1−i=−√3+i
(vii) 2+3i4+5i=2+3i4+5i×(4−5i)(4−5i) (Rationalising the denominator)=2(4−5i)+3i(4−5i)42+52=8−10i+12i+1516+25 (∵ i2=−1)=23+2i41=2341+241i∴ 2+3i4+5i=2341+241i
(viii) (1−i)31−i3=13−i3−3×1×i(1−i)1−(−i) [∵ (a−b)3=a3−b3−3ab(a−b) and i3=−i]=1−(−i)−3i(1−i)1+i=1+i−3i−31+i=−2−2i1+i=−2(1+i)1+i=−2=−2+0i∴ (1+i)31−i3=−2+0i
(ix) (1+2i)−3=1(1+2i)3 (∵ z−3=1z3)=113+(2i)3+3×1×2i(1+2i)=113+23×i3+6i(1+2i)=11−8i+6i−12 (∵ i3=−i and i2=−1)=1−11−2i=1−11−2i×(−11+2i)(−11+2i)=−11+2i(−11)2+22=−11+2i121+4=−11125+2125i∴ (1+2i)−3=−11125+2125i
(x) 3−4i(4−2i)(1+i)=3−4i4(1+i)−2i(1+i)=3−4i4+4i−2i+2=3−4i6+2i=3−4i6+2i×6−2i6−2i=3(6−2i)−4i(6−2i)62+22=18−6i−24i−836+4=10−30i40=10(1−3i)40=1−3i4=14−34i∴ 3−4i(4−2i)(1+i)=14−34i
(xi) (11−4i−21+i)(3−4i5+i)=1+i−2(1−4i)(1−4i)(1+i)×3−4i5+i=1+i−2+8i1(1+i)−4i(1+i)×3−4i5+i=−1+9i(1+i−4i+4)×3−4i5+i=−1(3−4i)+9i(3−4i)(5−3i)(5+i)=−3+4i+27i+365(5+i)−3i(5+i)=33+31j25+5i−15i+3=33+31i28−10j=33+31i28−10i×(28+10i)28+10i=33×28+33×10i+31i×28+31i×10i282+102=924+330i+868i−310784+100=614+1198i884=614884+1198884i=307442+599442i∴ (11−4i−21+i)(3−4i5+i)=307442+499442i
(xii) 5+√2i1−√2i=5+√2i1−√2i×1+√2i1+√2i=5(1+√2i)+√2i(1+√2i)1+2=5+5√2i+√2i−23=3+6√2i3=1+2√2iTherefore,~5+√2i1−√2i=1+2√2i