wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express the following complex numbers in the standard form a + i b :

(i) (1+i)(1+2i)(ii) 3+2i2+i(iii) 1(2+i)2(iv) 1i1+i(v) (2+i)32+3i(vi) (1+i)(1+3i)1i(vii) 2+3i4+5i(viii) (1i)31i3(ix) (1+2i)3(x) 34i(42i)(1+i)(xi) (114i21+i)(34i5+i)(xii) 5+2i12i

Open in App
Solution

(i) (1+i)(1+2i)=1×(1+2i)+i(1+2i)=1+2i+i+2i2=1+3i2=1+3i (1+i)(1+2i)=1+3i

(ii) 3+2i2+i=3+2i(2+i)×2i2i[Rationalising the denominator]=3(2i)+2i(2i)(2)2(i)2 [ (a+ib)(aib)=a2+b2]=63i4i+24+1 [ i2=1]=47i5=4575i 3+2i2+i=4575i

(iii) 1(2+i)2=1(2+i)2=122+(i)2+2×2×i=141+4i=13+4i=1(3+4i)×(34i)(34i) [on rationalising the denominator]=34i32+42 [ (a+ib)(aib)=a2+b2]=34i25=325425i 1(2+i)2=325425i

(iv) 1i1+i=(1i)(1+i)×(1i(1i (Rationalising the denominator)=(1i)212+12 [ (a+ib)(aib)=a2+b2]=12+i2=2×i×12=2i2=i=0i 1i1+i=0i

(v) (2+i)32+3i=23+i3+3×2×i(2+i))2+3i [ (a+b)3=a3+b3+3ab(a+b)]=(8i+6i(2+i))2+3i×(23i)23i(On rationalising the denominator)=(8i+12i+6i2)(23i)22+32=(86+11i)(23i)4+9 ( i2=1)=(2+11i)(23i)13=46i+22i+3313=37+16i13=3713+1613i (2+i)32+3i=3713+1613i

(vi) (1+i)(1+3i)1i=1(1+3+i(1+3i))1i=(1+3i+i3)1i ( i2=1)=(13)+i(1+3)1i×(1+i)1+i (Rationalising the denominator)=(13)(1+i)+i(1+3)(1+i)12+12=1+i3(1+i)+i(1+i+3(1+i))2=1+i33i+(1+i+3+3i)2=13+i3i1+3i32=23+2i2=3+i (1+i)(1+3i)1i=3+i

(vii) 2+3i4+5i=2+3i4+5i×(45i)(45i) (Rationalising the denominator)=2(45i)+3i(45i)42+52=810i+12i+1516+25 ( i2=1)=23+2i41=2341+241i 2+3i4+5i=2341+241i

(viii) (1i)31i3=13i33×1×i(1i)1(i) [ (ab)3=a3b33ab(ab) and i3=i]=1(i)3i(1i)1+i=1+i3i31+i=22i1+i=2(1+i)1+i=2=2+0i (1+i)31i3=2+0i

(ix) (1+2i)3=1(1+2i)3 ( z3=1z3)=113+(2i)3+3×1×2i(1+2i)=113+23×i3+6i(1+2i)=118i+6i12 ( i3=i and i2=1)=1112i=1112i×(11+2i)(11+2i)=11+2i(11)2+22=11+2i121+4=11125+2125i (1+2i)3=11125+2125i

(x) 34i(42i)(1+i)=34i4(1+i)2i(1+i)=34i4+4i2i+2=34i6+2i=34i6+2i×62i62i=3(62i)4i(62i)62+22=186i24i836+4=1030i40=10(13i)40=13i4=1434i 34i(42i)(1+i)=1434i

(xi) (114i21+i)(34i5+i)=1+i2(14i)(14i)(1+i)×34i5+i=1+i2+8i1(1+i)4i(1+i)×34i5+i=1+9i(1+i4i+4)×34i5+i=1(34i)+9i(34i)(53i)(5+i)=3+4i+27i+365(5+i)3i(5+i)=33+31j25+5i15i+3=33+31i2810j=33+31i2810i×(28+10i)28+10i=33×28+33×10i+31i×28+31i×10i282+102=924+330i+868i310784+100=614+1198i884=614884+1198884i=307442+599442i (114i21+i)(34i5+i)=307442+499442i

(xii) 5+2i12i=5+2i12i×1+2i1+2i=5(1+2i)+2i(1+2i)1+2=5+52i+2i23=3+62i3=1+22iTherefore,~5+2i12i=1+22i


flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Why Conservation of Energy?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon