1+i1−i=1+i1−i×1+i1+i=(1+i)212−i2=1+2i+i21+1=1+2i−12=i=0+1i.(ii)(1−i1+i)2=1−2i+i21+2i+i2=1−2i−11+2i−1=−2i2i=−1=−1+0i.(iii)(1+i1−i)=[1+i1−i×1+i1+i]=(1+i)21−i2=1+i2+2i1−(−1)=1−1+2i2=i∴(1+i1−i)3=i3=i.i2=−i=0−1i.[Using(i)]
(iv)(3+√5i)(3−√5i)(√3+√2i)−(√3−√2i)=9−5i22√2i=9+52√2i=142√2i=142√2iii=14i2√2i2=7√22i.