wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express the following integral as limit of sum and hence evaluate, 20(3x2+5)dx

Open in App
Solution

20(3x2+5)dx h=bax=20x=2x
baf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)+...+f{a+(n1)h}
I=20(3x2+5)dx=limh0h[f(0)+f(0+h)+f(0+2h)+....+f{0+(n1)h}]
=limh0h[{3(0)2+5}+{3(0)2h)2+5}+{3(0+2h)2+5}+...
=limh0h[5+3h2+5+6h2+5+9h2+5+...+3(n1)h2+5]
=limh0h[5n+3h2[1+2+3+....+(n1)]]
=limh0h[5n+3h2×n(n1)2]
=limn2n[5n+3×4n2×n(n1)2]
=limn2n[5n+6(n1)n]
=limn[10+12(n1)n2]
=[10+0]
=10

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon