wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Express the following matrices as the sum of a symmetric and a skew-symmetric matrices
(i)[3511]

(ii)622231213

(iii)331221452

(iv)[1512]

Open in App
Solution

Let A=[3511], then A=P+Q
where, P=12(A+A)andQ=12(AA)
Now, P=12(A+A)=12([3511]+[3151])=12[6662]=[3331]
P=[3331]=[3331]=P
(P=P, then P is a symmetric matrix.)
Thus, P=12(A+A) is a symmetric matrix.
Now, Q=12(AA)=12([3511][3151])=12[0440]=[0220],
,Q=[0220]=[0220]=Q
[Q=Q, then Q is a skew-symmetric matrix]
Thus, Q=12(AA) is a skew -symmetric matrix.
Representing A as the sum of P and Q.
P+Q=[3331]+[0220]=[3511]=A.

Let A=622231213, then A=622231213=622231213=A
Now, A+A=622231213+622231213=1244462426
Let P=12(A+A)=121244462426=622231213
Now, P=622231213=622231213=P
Thus, P=12(A+A) is a symmetric matrix.
Now, AA=622231213622231213=000000000
Let Q=12(AA)=12000000000Now,Q=000000000=Q
Thus, Q=12(AA) is a skew-symmetric matrix.
Representing A as the sum of P and Q.
P+Q=622231213+000000000=622231213=A

Let A=331221452,thenA=324325112
Now, A+A=331221452+324325112=615144544
P=12(A+A)=12615144544=⎢ ⎢ ⎢3125212225222⎥ ⎥ ⎥
Now, P=⎢ ⎢ ⎢3125212225222⎥ ⎥ ⎥=⎢ ⎢ ⎢3125212225222⎥ ⎥ ⎥=P
Thus, P=12(A+A) is a symmetric matrix.
Now, AA=331221452324325112=053506360
Let Q=12(AA)=12053506360=⎢ ⎢ ⎢0523252033230⎥ ⎥ ⎥

Now, Q=⎢ ⎢ ⎢0523252033230⎥ ⎥ ⎥=⎢ ⎢ ⎢0523252033230⎥ ⎥ ⎥=Q
Thus, Q=12(AA) is a skew -symmetric matrix.
Representing A as the sum of P and Q.
P+Q=⎢ ⎢ ⎢3125212225222⎥ ⎥ ⎥+⎢ ⎢ ⎢0523252033230⎥ ⎥ ⎥=331221452=A

Let A=[1512]. Then, A=[1512]=[1152]
Now, A+A=[1544]=[1152 ]=[2444]

Let P=12(A+A)=12[2444]=[1222],Now,P=[1222]=[1222]=P
Thus, P=12(A+A) is a symmetric matrix.
Now, AA=[1512][1152]=[0660]
Let Q=12(AA)=12[0660]=[0330]
Now, Q=[0330]=[0330]=Q
Thus, Q=12(AA) is a skew -symmetric matrix.
Represending A as the sum of P and Q.
P+Q=[1222]+[0330]=[1512]=A


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Symmetric Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon