Express the following matrix as the sum of a symmetric and a skew-symmetric matrices;
⎡⎢⎣33−1−2−21−4−52⎤⎥⎦
Let A=⎡⎢⎣33−1−2−21−4−52⎤⎥⎦, then A′=⎡⎢⎣3−2−43−2−5−112⎤⎥⎦
Now, A+A′=⎡⎢⎣33−1−2−21−4−52⎤⎥⎦+⎡⎢⎣3−2−43−2−5−112⎤⎥⎦=⎡⎢⎣61−51−4−4−5−44⎤⎥⎦
P=12(A+A′)=12⎡⎢⎣61−51−4−4−5−44⎤⎥⎦=⎡⎢
⎢
⎢⎣312−−5212−2−2−52−22⎤⎥
⎥
⎥⎦
Now, P′=⎡⎢
⎢
⎢⎣312−5212−2−2−52−22⎤⎥
⎥
⎥⎦=⎡⎢
⎢
⎢⎣312−5212−2−2−52−22⎤⎥
⎥
⎥⎦=P
Thus, P=12(A+A′) is a symmetric matrix.
Now, A−A′=⎡⎢⎣33−1−2−21−4−52⎤⎥⎦−⎡⎢⎣3−2−43−2−5−112⎤⎥⎦=⎡⎢⎣053−506−3−60⎤⎥⎦
Let Q=12(A−A′)=12⎡⎢⎣053−506−3−60⎤⎥⎦=⎡⎢
⎢
⎢⎣05232−5203−32−30⎤⎥
⎥
⎥⎦
Now, Q′=⎡⎢
⎢
⎢⎣05232−5203−32−30⎤⎥
⎥
⎥⎦=⎡⎢
⎢
⎢⎣0−52−32520−33230⎤⎥
⎥
⎥⎦=−Q
Thus, Q=12(A−A′) is a skew -symmetric matrix.
Representing A as the sum of P and Q.
P+Q=⎡⎢
⎢
⎢⎣312−5212−2−2−52−22⎤⎥
⎥
⎥⎦+⎡⎢
⎢
⎢⎣05232−5203−32−30⎤⎥
⎥
⎥⎦=⎡⎢⎣33−1−2−21−4−52⎤⎥⎦=A