Express the given complex number in the form a+ib:(13+3i)3
Open in App
Solution
Using (a+b)3=a3+b3+3ab(a+b) we have, (13+3i)3=(13)3+(3i)3+3(13)(3i)(13+3i) =127+27i3+3i(13+3i) =127+27(−i)+i+9i2,[∵i3=−i] =127−27i+i−9,[∵i2=−1] =(127−9)+i(−27+1) =−24227−26i=a+ib where a=−24227 and b=−26