wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express: Z=i1cosπ3+isinπ3 in polar form.

Open in App
Solution

Z=i1cosπ3+isinπ3
=i1(12+i32)×(12i32)(123i2
=i2+3212+3i214+34
=(3212)+i(12+32)
polor from
z=r(cosθ+isinθ)
rcosθ=312,rsinθ=3+12.
squaring and adding
r2=323+1+3+23+14=2
r=2
cosθ=3122=32×1212×12
=cosπ6.cos(π4)sinπ6.sinπ4
cosθ=cos(π6+π4)
θ=5π12(cos(A+B))=cosA.cosBsinAsinB)
Hence, required poloar from
z=2(cos5π12+isin5π12)

1222731_1297779_ans_36f72e74579d4befbf635fea2dad7f66.jpg

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon