The correct option is D √Ghc5
Let t∝Gxhycz
Dimensions of G=[M−1L3T−2]
h=[ML2T−1] and
c=[LT−1]
[T]=[M−1L3T−2]x[ML2T−1]y[LT−1]z
[M0L0T1]=[M−x+yL3x+2y+zT−2x−y−z]
By comparing the powers of M,L,T both the sides
−x+y=0⇒x=y
3x+2y=z=0⇒5x+z=0 ...(i)
−2x−y−z=1⇒3x+z=−1 ....(ii)
Solving eqns. (i) and (ii),
x=y=12,z=−52 ∴t∝√Ghc5