wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Extending the functions in col. 1 as limxπf(x)

Open in App
Solution

A) limxπf(x)=limxπ1cos(7(xπ))xπ=limxπ2sin2((7/2)(πx))((7/2)(πx))2.494(πx)=(2)(1)(494(ππ))=0
f(π)=0
B) limxπf(x)=limxπ1cos(7(xπ))(xπ)2=limxπ2sin2((7/2)(πx))((7/2)(πx))2.494=(2)(1)(494)=492
f(π)=492
C) limxπf(x)=limxπsinx1x2/π2=limxπsin(πx)(πx)(π+x).π2=π22π=π2
f(π)=π2
D) limxπf(x)=limxπsin7xsin2x=limu0sin7(πu)sin2(πu)=limu0sin7usin2u=72
f(π)=72

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon