f(x)=⎧⎪
⎪⎨⎪
⎪⎩xx2+1,1<x<22xx2+1,2≤x<3
Consider y=xx2+1
dydx=1(x2+1)−2x⋅x(x2+1)2
⇒dydx=1−x2(x2+1)2<0 ∀ x∈(1,3)
⇒y is strictly decreasing in its domain.
∴ Range of f is (25,12)∪(35,45]
Now, cot(a1a2b1b2x+32)=cot(512x+32)
∴ Fundamental period of cot(512x+32) is π5/12=12π5