wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f is a continuous function in [a,b]; g is a continuous function in [b,c]. A function h(x) is defined as
h(x)=f(x) for xϵ[a,b)
=g(x) for xϵ(b,c].
If f(b)=g(b), then

A
h(x) has a removable discontinuity at x=b
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
h(x) may or may not be continuous in [a,c]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
h(b)=g(b+)=f(b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
h(b+)=g(b+)=f(b+)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A h(x) has a removable discontinuity at x=b
D h(b)=g(b+)=f(b)
The function h(x) is not defined at x=b. However, since f(b)=g(b), limxbf(x)=limxb+g(x).
This means, if h(b) is defined as f(b)=g(b), the function will become continuous at x=b. So, it has a removeable discontinuity at this point.
Also, by definition of h(x), h(b)=g(b+)=f(b).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Continuous Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon