The correct option is A 3
f(x+y)=f(x)f(y) ....(1)
Put x=1,y=0 in (1)
f(1)=f(1)f(0)
⇒f(0)=1=20
Put x=1,y=1 in (1)
f(2)=f(1)f(1)
⇒f(2)=22
Put x=2,y=1 in (1)
f(3)=f(2)f(1)
⇒f(3)=23
Hence, f(k)=2k for all whole numbers.
Now, by (1), we can write
f(a+k)=f(a)f(k)
∑nk=1f(a+k)=f(a)∑nk=1f(k)
⇒16(2n−1)=2a(2+22+23+....+2n)
⇒16(2n−1)=2a+1(2n−1)
⇒16=2a+1
⇒a=3