wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f is a non-zero function such that f(x)=x0f(t)sin(k(xt))dt and
f′′(x)=0. Then the value(s) of k is/are

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1
f(x)=x0f(t)sin(k(xt))dtf(x)=x0f(t)[sinkxcosktsinktcoskx]dt
f(x)=sinkxx0f(t)coskt dtcoskxx0f(t)sinkt dt
f(x)=kcoskxx0f(t)coskt dt+sinkx[f(x)coskx] +ksinkxx0f(t)sinkt dtcoskx[f(x)sinkx]
f(x)=kcoskxx0f(t)coskt dt+ksinkxx0f(t)sinkt dt

Again differentiating wrt x, we get
f′′(x)=k2sinkxx0f(t)coskt dt+kcoskx[f(x)coskx] +k2coskxx0f(t)sinkt dt+ksinkx[f(x)sinkx]
f′′(x)=k2f(x)+kf(x)k=0,1
But f is a non-zero function.
k=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De-Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon