The correct option is B 1
f(x)=x∫0f(t)sin(k(x−t))dt⇒f(x)=x∫0f(t)[sinkxcoskt−sinktcoskx]dt
⇒f(x)=sinkxx∫0f(t)coskt dt−coskx∫x0f(t)sinkt dt
∴f′(x)=kcoskxx∫0f(t)coskt dt+sinkx[f(x)coskx] +ksinkxx∫0f(t)sinkt dt−coskx[f(x)sinkx]
⇒f′(x)=kcoskxx∫0f(t)coskt dt+ksinkxx∫0f(t)sinkt dt
Again differentiating wrt x, we get
f′′(x)=−k2sinkxx∫0f(t)coskt dt+kcoskx[f(x)coskx] +k2coskxx∫0f(t)sinkt dt+ksinkx[f(x)sinkx]
⇒f′′(x)=−k2f(x)+kf(x)⇒k=0,1
But f is a non-zero function.
∴k=1