Solving the given function for continuity,
Now solving left hand limit: f(x)=1−sin2x3cos2x
At x=Π2,f(x)=00 form, so using L-hospital rule, we get
f(x)=−2sinxcosx−6cosxsinx=13
Now solving right hand limit:\ f(x)=b(1−sinx)(π−2x)2
This is again of the form f(x)=00 form, so using L-hospital rule, we get
f(x)=b(−cosx)2(Π−2x)(−2)=bcosx4(Π−2x)
This is again of the form f(x)=00 form, so using L-hospital rule, we get
f(x)=−bsinx4(−2)=bsinx8
At x=Π2,f(x)=b8
L.H.L=a=R.H.L
⟹13=a=b8
We get, a=13 and b=83