We have,
f(x)=∣∣ ∣∣cosxx12sinxx22xtanxx1∣∣ ∣∣
Expansion from Row (1)
f(x)=cosx(x2−2x2)−x(2sinx−2xtanx)+1(2xsinx−x2tanx)
⇒f(x)=−x2cosx−2xsinx+2x2tanx+2xsinx−x2tanx
⇒f(x)=−x2cosx+x2tanx
⇒f(x)=x2tanx−x2cosx
⇒f(x)=x2(tanx−cosx)
On differentiating and we get,
f′(x)=x2(sec2x+sinx)+(tanx−cosx)2x
f′(x)=x[x(sec2x+sinx)+(tanx−cosx)2]
Then,
limx→0f′(x)x
=limx→0x[x(sec2x+sinx)+(tanx−cosx)2]x
=limx→0[x(sec2x+sinx)+(tanx−cosx)2]
Taking limit and we get,
−2