wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f(x)=asinπ2(x+1),x0tanxsinxx3,x>0 is continuous at x=0. Find the value of a.

Open in App
Solution

f(x) is continuous at x=0

L.H.L of f(x) at x=0=R.H.L of f(x) at x=0=f(0)

limx0f(x)=limx0+f(x)=f(0) .........(1)

Now,limx0f(x)=limx0asinπ2(x+1)

f(x)=asinπ2(x+1) if x0

=limx0asin(π2+π2x)

=limx0acosπ2x=acos0=a

limx0+f(x)=limx0+tanxsinxx3

f(x)=tanxsinxx3 if x>0

=limx0sinxcosxsinxx3

=limx0sinxsinxcosxcosx.x3

=limx01cosxlimx0sinxxlimx01cosxx2

=limx01×1×limx02sin2x2x24×4

=limx01×1×12=12

Also,f(0)=asinπ2(0+1)=asinπ2=a

Putting above values in (1) we get,a=12

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon