For log to be defined ,
(2x³ + 5x² -14x) > 0
x(4 x + 5 - √137)(4x + 5 +√137) > 0
log₂( 2x³ + 5x² -14x) > 0
2x³ + 5x +14x > 1
2x³ + 5x - 14x - 1 > 0________(1)
log₃log₂( 2x³ + 5x² -14x) > 0
2x³ + 5x² - 14x -2 > 0______(2)
log₅log₃log₂( 2x³ + 5x² -14x) >0
2x³ + 5x² -14x - 8 > 0_______(3)
hence,
x(4 x + 5 - √137)(4x + 5 +√137) > 0
and 2x³ + 5x² -14x - 8 > 0 after taking common (1) , (2) and (3)
(x - 2) (x + 4) (2 x + 1)>0
now put in number line then,
domain : 14(−5−√(137))<x<0 or x>(−5+√(137))4