The correct option is C c=2
a+b+c=7
∑f(x)+∑f(x)⋅f(y)+f(x)⋅f(y)⋅f(z)=7
Assuming t=f(x) and putting y=z=x, we get
t3+3t2+3t−7=0
By observation, t=1, so
⇒(t−1)(t2+4t+7)=0
Now,
t2+4t+7=0D=16−28<0
No real roots.
Therefore,
f(x)=1=f(y)=f(z)
Hence, a=3,b=3,c=1