wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f(n)=nk=1nj=k(nCj)(jCk) then sum of digits of f(6) is

Open in App
Solution

We expand f(n).
f(n)=Cn1C11+Cn2C21+Cn3C31+......+CnnCn1.......(k=1)
+Cn2C22+Cn3C32+Cn4C42+......+CnnCn2..........(k=2)
+Cn3C33+Cn4C43+Cn5C53+......+CnnCn3..........(k=3)
+...
CnnCnn........(k=n)
f(n)=Cn1(C11)+Cn2(C21+C22)+Cn3(C31+C32+C33)+......+Cnn(Cn1+Cn2+....+Cnn)
We know that Ca1+Ca2+....+Caa=2a1
f(n)=Cn1(211)+Cn2(221)+Cn3(231)+.......+Cnn(2n1)
=Cn1(21)+Cn2(22)+Cn3(23)+.......+Cnn(2n)(C1n+C2n+C3n+.......+Cnn)
We know (x+y)n=Cn0(xn)+Cn1(xn1)y+Cn2(xn2y2)+.......+Cnn(yn)
Here x=1 and y=2
f(n)=((1+2)n1)(2n1)=3n2n
f(6)=3626=72964=665
Sum of digits is =6+6+5=17

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon