We expand
f(n).
f(n)=Cn1C11+Cn2C21+Cn3C31+......+CnnCn1.......(k=1)
+Cn2C22+Cn3C32+Cn4C42+......+CnnCn2..........(k=2)
+Cn3C33+Cn4C43+Cn5C53+......+CnnCn3..........(k=3)
+...
CnnCnn........(k=n)
f(n)=Cn1(C11)+Cn2(C21+C22)+Cn3(C31+C32+C33)+......+Cnn(Cn1+Cn2+....+Cnn)
We know that Ca1+Ca2+....+Caa=2a−1
∴f(n)=Cn1(21−1)+Cn2(22−1)+Cn3(23−1)+.......+Cnn(2n−1)
=Cn1(21)+Cn2(22)+Cn3(23)+.......+Cnn(2n)−(C1n+C2n+C3n+.......+Cnn)
We know (x+y)n=Cn0(xn)+Cn1(xn−1)y+Cn2(xn−2y2)+.......+Cnn(yn)
Here x=1 and y=2
∴f(n)=((1+2)n−1)−(2n−1)=3n−2n
f(6)=36−26=729−64=665
Sum of digits is =6+6+5=17